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Abstract. Based on a commonly ;?sed model for the time evolution of extensive variables 
and on the basis of the analogies between the nonlinear stochastic theory and imaginary 
time quantum mechanics in curved space, we set up a canonical operator formulation of 
non-equilibrium thermodynamics which emphasizes the fundamental role played by the 
Boltrmann constant k in fluctuations. The k-0 of this theory yields the classical descrjption 
of non-equilibrium thermodynamics. The new formulation is technically useful and provides 
new insights which have important consequences, namely the thermodynamic uncertainty 
principle and the quantization of the entropy production rate for stationary states. 

1. Introduction 

The role of the Boltzmann constant becomes vital when fluctuations are involved. 
Fluctuations imply indeterminacy both at the microscopic and the macroscopic levels. 
As an example of the role of k at the microscopic level, consider the canonical ensemble 
of statistical mechanics. In the k-0 l i t ,  only the ground state will be populated, so 
that the description becomes deterministic in the sense that only one energy state is 
available. On the other hand, if k-tco, all the possible states would be equally probable, 
making the description completely racdom or indeterministic. The following account 
of equilibrium Buctuations proiides an example of the role of  k at a macroscopic level. 

Consider a thermodynamic system in thermal equilibrium. Let the equilibrium state 
be represented by the point qw=O in the thermodynamic configuration space, where q 
denotes the set (q l ,  . . . , q,) of relevant extensive variables. The entropy S(q) is maximal 
at equilibrium so that ,& = 0 where xi = 8,s are the conjugate intensive variables. Taking 
fluctuations around equilibrium into account, we have by the Boltzmann-Einstein prin- 
ciple that 

(1.1) S W / k  Qes(q)ae 

for the equilibrium probability distribution Q,(q) of q. Using the quadratic form 
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where 

(Aqt):q=<d )c4- <qr ):= (d >c4 
one can easily show that 

( A q i ) e q ( A X j ) s q  2k6,. (1.2) 

As is well known, the equality sign holds for Gaussian distributions, which is normally 
the case for equilibrium situations. Thus, fluctuations yield uncertainties in the simul- 
taneous measurement of conjugate variables. The deterministic description of an equi- 
librium state by the point qeq=,ycq=O in the thermodynamic phase space is the k-0 
limit of the formulation via f&(q), which takes fluctuations into account. We shall 
refer to (1.2) and its analogue in non-equilibrium situations, to be seen later, as the 
thermodynamic uncertainty principle (TUP). 

The subject of simultaneous fluctuations in the extensive and the conjugated 
intensive variables has always been controversial (e.g. see [ I ,  21). Consider for example 
the simultaneous fluctuations of internal energy U and the temperature T of a system 
in equilibrium. According to the statistical mechanical or microscopic point of view, in 
the canonical ensemble theory, T enters as a Lagrange multiplier and is therefore 
constant and non-fluctuating. Conversely, in the microcanonical ensemble approach, 
the energy in known exactly while Tcan fluctuate. Hence, simultaneous fluctuations in 
the conjugate variables run into trouble from a microscopic point of view. Statistical 
mechanical ensembles correspond to the appropriate infinite reservoirs of thermo- 
dynamics, which from the macroscopic point of view are used to fix the value of either 
the extensive or the conjugated intensive parameter. These infinite reservoirs (like their 
statistical mechanical counterparts, i.e. ensembles) are fictitious [I]. So from a macro- 
scopic point of view (instantaneous), conjugate quantities must in principle fluctuate 
simultaneously. In this sense there is a complementary relation between the microscopic 
and the macroscopic viewpoints as noted long ago by Bohr [3,4]. Thus for the conjugate 
pair (U, 1/T) we have by the equilibrium TUP that 

which yields (AU)-(AT)-  =kT2. This relation has been confirmed experimentally [ 2 ] ,  
thus supporting the macroscopic viewpoint. In this article we adopt the macroscopic 
viewpoint, which, based on the TUP, asserts that simultaneous precise knowledge of 
conjugate variables is impossible, and proceed to explore the implications of such a 
viewpoint. 

The TUP is obviously important in situations where fluctuations play a signscant 
role, e.g. in mesoscopic systems. Our basic aim is to extrapolate and generalize such 
considerations to the non-equilibrium domain by emphasizing the role of k (and hence 
simultaneous fluctuations) in systems away from thermal equilibrium. To proceed it is 
necessary to employ a model for the (deterministic) evolution of our system. This is 
introduced in the next section. Stochastic methods then provide a natural framework 
for incorporating and studying non-equilibrium fluctuations. As is well known, the 
k-tO of such a stochastic theory reduces to the ‘classical’ detenninistic formulation of 
non-equilibrium thermodynamics in which fluctuations are completely neglected. 
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Exploiting the similarity between the nonlinear stochastic formulation and imaginary 
time quantum mechanics in curved space, we shall present an operator description of 
non-equilibrium thermodynamics based upon a representation of fluctuating thermo- 
dynamic variables by Hermitian operators, which emphasizes the fundamental role of 
k. The new formulation is technically useful and provides new insights which have 
important implications, namely the TUP in non-equilibrium and the quantization of the 
entropy production rate for stationary states which pertains to our model. 

2. Brief review of stochastic theory 

In the classical deterministic limit, if our thermodynamic system is temporarily removed 
from equilibrium, its evolution will be determined by the phenomenological equations 
of motion (summation convention implied hereafter) 

where lv  is the matrix of Onsager coefficients which is positive-semidefinite and symmet- 
ric [51; and in general a function of the state variables q. Equation (2.1) is a commonly 
used model for the evolution of the extensive variables and is appropriate for a variety 
of phenomena. Here x3 = 8;s are designated as forces which have a restoring character 
and @'as flows. S(q) is evidently a scalar under transformations in the thermodynamic 
configuration space. For the covariance of the formalism to be manifest under such 
transformations, we introduce a Riemannian geometry in the thermodynamic config- 
uration space by taking the 'inverse' kinetic coefficients lu ( l , l j k = S f )  to play the role 
of the metric. This allows us to define covariant and contravariant tensors in the 
(generally) 'curved' thermodynamic co&guration space in the customary manner. 
Then, taking fluctuations into account, one must introduce a time-dependent probability 
distribution Q(q, t )  to q such that 

The factor l/$, where L(q) =det(["), is included explicitly to make the normalization 
of the probability distribution a truly invariant property under transformations in the 
thermodynamic codguration space. Equation (2.2) is to be regarded as an empirical 
condition to be imposed upon the physically acceptable non-equilibrium distributions 
for an isolated system. Of course, Q(q, t )  must remain at all times non-negative and 
normalized. The latter condition requires that Q(q, t )  vanishes at infinity at all times. 

We want to present our formulation with reference to the results of stochastic theory 
in non-equilibrium. We shall consider the general case of state-dependent Onsager 
coefficients and allow the xs to be nonlinear in qs. Thus, our considerations apply to 
linear and nonlinear domains. Of the three alternative and well known methods of the 
stochastic formulation (namely the Langevin, Fokker-Plank (FP) and path integral 
methods), the Langevin approach is not particularly favourable in the genuine nonlinear 
situations. This is because for non-constant le,  the well known ambiguity in the interpre- 
tation of the Langevin equation (namely that of Ito or Stratonovich) makes its use 
rather cumbersome (e.g. see [ 6 ] ) .  For this reason, we focus our attention on the FP and 
the path integral approaches, which have been worked out by Grabert and Green [7] 
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for the general case under consideration. Below we quote their results: 

equation 
(i) FP approach. The evolution of the probability distribution is given by the FP 

&Q(q, t )  = ai { I!'[k djl;b-R( ,yj+ kr,)]} (2.3) 
where rj=r$ is the contraction of Christoffel's symbol of the second kind r: for the 
thermodynamic configuration space which can be written in terms of the derivatives 
of the metric metric in the customary manner. Using the standard relation rj= 
-8, In x, the stationary state solution of (2.3) is seen to be the equilibrium distribution 
satisfying requirement (2.2). 

(ii) Path integral approach. An alternative description is via the conditional prob- 
ability or the 'propagator' W(2/1), which is the Green function of the FP equation. It 
is given by 

where 

d[q1= lim (4n~k)-"/~ Nc' S d q J m .  
N - ~ ( e - 0 )  

In the above equation, R is the curvature scalar of the thermodynamic configuration 
space and Di denotes covariant differentiation n<th respect to i. Note that at the classical 
deterministic level k-0, (2.1) yields the most probable path in (2.4). This is because 
only variations at the initial (and not the final) point are required to vanish, and, as 
k+O, the integrand of the time integral reduces to a positive-semidehite form. 

These considerations illustrate the sigdicance of the role of k in non-equilibrium 
fluctuations. 

3. Canonical operator formulation of non-equilibrium thermodynamics 

We write the FP equation (2.3) in the form 

-k a, n(q, t )  = kqq, t )  (3.1~) 

A=-E aj{ iv (k  a j - x j - k r j ) } .  (3 . lb)  

Equation (3.1~) has the form of the Schrodinger equation in imaginary time where f i  
is usually called the FP Hamiltonian. In our canonical operator formulation (COF) we 
lay special emphasis upon (simultaneous) fluctuations and the role of k by representing 
fluctuating thermodynamic variables by Hermitian operators. In particular, we intro- 
duce an operator p* conjugate to 4 such that 

where k = 2k and 

[4',fij]=iR6j (3.2) 
in analogy to quantum mechanics in curved space. This is because, as noted earlier, 
fluctuations always imply uncertainties in the simultaneous measurement of conjugate 
variables. Equation (3.2) is thus a manifestation of the TUP in the operator formalism. 
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Following the analogy with quantum mechanics in curved space (e.g. see [SI), in 
the q-representation one must have 

(q1@;=L1’4(-ik ai)L-”4(q[ a ; ( q l ~ - ~ / ~ ( Q )  (3.3) 

in order to satisfy the TUP (3.2) and to preserve the Hermicity of$ so that 

Also, of course, $14) =qIq) and a(q, t )  = (qla(i)). Thus, the normalization condition 
for the probability distribution may be written as 

(.la(t)>=1 vt (3.4) 

where [ .)=ldqlq). The FP equation (3.10) therefore becomes 

-k  a,ln(t)>=Ei($, Q)lQ(t)>. (3.5) 

We now want to 6nd the possible forms of the FP Hamiltonian fi compatible with the 
TUP and the requirement (2.2). 

Since the TUP (3.2) requires (3.3), one can easily show that 

( ’  li-1/4$,i’/4[a(t))=o 

which yields 

( . ~ ~ - l / 4 $ z ~ l / 4 = o  (3.6) 

Differentiating (3.4) with respect to time yields (. [Qa(t)>=O. This is satisfied if I?. 
contains i-’/4$li’/4 on its left. Now assume that E. (n=O, 1,2,. . .) constitute the 
spectrum of (non-Hermitian) I? with IC.) and (5.1 as the corresponding (normalized) 
right and left eigenvectors, respectively. Integrating (3.5) formally yields 

In(t)>=exp(-tfi /k)ls))  

= c exp(-Wk)  I C. ) (5. I W)>. 
n 

To fulfil requirement (2.2) one ;nust demand that EO = 0. and Re(&) > 0 for n # 0. Then 
p)/* 

Q d q )  = (41 CO> ~ ~ o I ~ ( 0 ) ) ~ -  a‘ 
Since (q Iq ’ )= f i  8(’)(q-d), we have 

e S ( ~ ) / k  = ( q [ i - l / 2 e s / k [  .), 

Ico)=L-’ , s ( a ) / k I . > .  

These yield 

(3.7) 

s=S(q) is the entrocy operator which has the value_S(q) in the q-representation. Since 
S is a real function, S is Hermitian. Operating with L1/4$p*iL-1’4 o n (3.7) yields, on using 
(3.6), the result 

(L-1/4@ii1/4 + 22; + ikFi) loo> = 0. 
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Thus, if 6 contains e - i : 4 ~ , , i ’ ” + 2 i ~ i + i ~ ~ i  on its right then f i I & , ) = O  is satisfied. 
Collecting results, the simplest form for H compatible with the TUP and the physical 
condition (2.2) is thereforc 

(3.8) 

^-1/4* i1!4,-. Observing L p i  - iX ai, this form coincides with (3.Ib). Therefore, the COF is 
a consistent alternative formulation whose ‘Schrodinger’ picture corresponds to the FP 

approach. Moreover, the path integral representation of the COF must correspond to 
the path integral approach of stochastic formulation discussed in section 2. This is not 
di5cult to show when I v  are constants. In this case we have also shown the correspond- 
ence of the Langevin approach with the Heisenberg picture of the COF [9]. For the 
general case of state-dependent I @  under consideration, the derivation of (2.4) from the 
COF is mathematically more demanding and can be accomplished by following the 
analogy to the path integral representation of quantum mechanics in curved space [SI. 
For the sake of clarity of presentation, and since the path integral formalism is not 
central to our argument, we shall not pursue this any furthert. 

4. The entropy production operator 

The FP Hamiltonian is not Hermitian and cannot therefore ?present a thermodynamic 
observable. Besides, it is easy to check from (3.lb) that H(-% a,-iW;, q) is not a 
scalar operator in the ‘curved’ thermodynamic configuration space. Also since the factor 
l/$ has been absorbed into Q(q. t )  (see (2.2)), Q(q, t )  cannot be a scalar. Our FP 
equation is therefore not generally covariant. For the covariance of the description to 
be manifest, we need to describe the evolution of the system in terms ,Of a scalar 
probability distribution and a scalar evolution operator. Non-Hermicity of H is another 
physically undesirable feature of the non-covariant description based upon the FP equa- 
tion (3.5). Fortunately, all these may.be remedied by the following transformation: 

la(t)>-+l y(r )>a i” ’  e-*’‘ la(t)>. (4.1) 

- E  atl I( f)>=fNY(o> (4.2) 

n($, B)=ii:2e-“k~eS~‘i-i/Z, 

y(q, t )  = (41 y(t)> is clearly a scalar. The new FP equation becomes 

which looks more like the Schrddinger equation, where 

(4.3) 

By the quotient theorem A(-ik &-ikr;, q )  is obviously a scalar operator. Since from 
(3.8) 

7 Putting M =  I (and in-+ E-k) in equation (10.101) of [8] yields the w m c t  term -kR/3. which appears 
in equation (2.4) of stochastic theory. If we adopt De’witt’s measure for the path integral (see [81 and 
references therein) we obtain the term -kR/6, which corresponds to Graham’s result, and the discrepancy 
with the former result is discussed in [7]. 
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and 
,- i lkat  eSlk - - -pi-i,tt 

fI= rRi I Ri= fI'20 
we have 

(4.4) 

f,=ji+ iWi+ i,&, (4.5) 

I y - v -  

where 
+ 

j & = ~ - l 1 4 $ i p +  i 

The new FP equation and FP operator (Aj2) are related to the old ones by a similitude 
which was designed to make the FP equation generally covariant and the FP operator 
Hermitian. These, respectively, mathematical and physical requirements make the trans- 
formation unique. We now ask the important question: does fI represent a thermo- 
dynamic observable? At the classical level k+O, where all the operators reduce to 
ordinary c-numbers. from 4=d,fl and (2.1) we havep=X, so that fI reduces to the 
(deterministic) entropy production rate. However, entropy production also suffers from 
fluctuations and is therefore an indeterministic quantity. Following our theme of rep- 
resenting fluctuating thermodynamic variables by Hermitian operators, we conjecture 
that the entropy production is represented by the Hermitian (and positive-semidefinite) 
operator fI. This is justified because fl has all the necessary ingredients, namely that 
(i) it is Hermitian and has the dimensions of the entropy production rate, (i) it is 
positive-semidefinite as required by the second law of thermodynamics, and (iii) it 
reduces to the deterministic entropy production rate as k-0. We see in the next section 
that the spectrum of fI is discrete. There, we also see that the new FP equation (4.2) 
offers an altemative but more physical description of the system's evolution in terms 
of the eigenstates and the corresponding eigenvalues of fl, which represent, respectively, 
the allowed stationary states and their corresponding values of the entropy production 
rate for the system. It is interesting how the mathematical and physical requirements 
of general covariance and a Hermitian FP operator can lead us to this physical picture. 

5. Quantization of the entropy productioo rate 
Because A is Hermitian and positive-semidefinite, its eigenstates form a complete ortho- 
gonal set and the corresponding eigenvalues are real and non-negative. Using (4.5), we 
can expand the entropy production operator as 

zfI=j3JJ$/+ V(4) (5.1) 

v(q) = 10 x i X j  + Pry rirJ + R ai (P ( x j  + ikr, ) } 
where 

(5.2) 

is the 'thermodynamic' potential. Of the three terms in (5.2) only the last one has an 
indefinite sign. The magnitude of the restoring forces xi  generally grow monotonically 
as q-&w (omitting pathological cases), and for most physical cases (a general treat- 
ment is quite complicated) this appears to be sufficient to make V(q) also go to idni ty  
in this limit. For such cases, the spectrum of fl will be discrete, which implies that its 
eigenfunctions are square integrable and hence vanish at infinity. (If V(q) remains 
bounded and positive at infinity, a discrete spectrum also exists.) In the remaining we 
shall assume a discrete spectrum, so that the solution of (4.2) can be written as 

(5.3) 
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where In) (n=O, 1,2, . . .) are the (normalized) eigenstates of A, and U, are the corre- 
sponding eigenvalues: 

fIln)=a,ln), (5.4) 

As mentioned before, In) form a complete orthonormal set and a.>O. From HlCo) = 
0 we deduce that 

f l i - l / 2  I , ) = 0 

so that 10)ai-'i2exp(,!?/lk)l.) is an eigenstate with uO=O. This corresponds to the 
equilibrium state. All other eigenstates have cn> 0. Orthonormality of In) implies that 
in (5.2) C.= (01 ~ ( 0 ) ) .  Thus, C, are determined by the initial conditions and carry the 
initial state information to later time?.. They represent the memory of the system. Also, 
(o l~ ( r ) )=C~.  Taking Co=l, these yield 

(01 Vr(O)> = (01 W ) = 1  (5 .5 )  

which is the normalization condition in terms of I ~ ( t ) ) ,  and states that the normaliza- 
tion is preserved at all times. In terms of I Q ( r ) )  we have by (4.1) and (5.3) that 

C" 
la(t)>=C-exp(-a/fi) =p(&fi)ln: 

0 4  

so that 
eS(9)ik 

!.b Q(4, t)=Qq(4)CC- 
,+a f i .  

It is seen from (5.3) that as tincreases, the role of C, and therefore the initial conditions 
becomes less significant. At sufficiently large times the system essentially looses its 
memory and finally settles in the equilibrium state. We note, in passing, that the stability 
of the final equilibrium state, whicb was evident from the start by imposing (2.2), is 
guaranteed by the existence of the Lyapunov function 

~ = - ~ ( w ( O l  w(t)> CO P=(w(t)lfily(t)>>O. (5.6) 

The discrete eigenvalues U, are the (quantized) entropy production rates pertaining to 
'states' represented by In). For this quantization of entropy production rate to be of 
physical significance, it must pertain to physical states. The individual terms in the 
expansion of (5.3) for I ~ ( t ) )  are not physically acceptable solutions for n#O because 
they do not meet the normalization condition (5.5). So eigenstates In), for n #O, cannot 
represent physical states, and the only stationary state is the 6nal equilibrium configura- 
tion IO). This is obviously because in our analysis (by imposing condition (2.2)) we 
considered the relaxation of an isolated system. However, we can make In), for n#O, 
physically realizable as non-equilibrium stationary states by imposing suitable (fixed) 
boundary conditions: we can maintain a non-equilibrium stationary state by a continu- 
ous flow of 'negative' entropy from the environment, through appropriate weak (and 
b e d )  constraints [IO]. This may be done by adjusting the value of a relevant control 
parameter which must not exceed some critical value in order that the constraints 
remain weak. (This is necessary for the stability of the final stationary state reached 
[lo].) Then from an initial non-equilibrium state the system will evolve towards the 
stationary state of allowed minimum entropy production rate (chosen from the discrete 
set {U"] and represented by the corresponding eigenstate) compatible with the imposed 
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boundary conditions. This corresponds to the classical minimum entropy production 
principle of Prigogine [ I l l ,  the only notable difference being that of quantization of 
the entropy production rate which pertains to our model solely due to the effect of 
fluctuations. The eigenstates and eigenvalues of fl can therefore be conjectured to 
characterize the possible stationary states of the system (compatible with appropriate 
fixed constraints imposed on its surface), and the discreteness of its spectrum expresses 
the quantization of the entropy production rate for stationary states. (Equation (5.3) 
is then comparable with its analogue in quantum mechanics, namely the expansion of 
an arbitrary state in terms of stationary states.) Thus, the collection of eigenvalues (or 
eigenstates) of fl characterize the (stable) thermodynamic branch [lo] of the system. 

The situation here is very much like that of an atom and the Frank-Hertz experi- 
ment: stationary states of an atom can only have certain allowed energies. When the 
atom is excited by a beam of incident particles with definite energy, only allowed 
stationary states, compatible with the incident energy will be occupied. By continuously 
altering the incident energy, resonance in absorption will occur when the incident energy 
matches that of the stationary states. Experimentally, quantization of the entropy pro- 
duction rate may similarly be verified by a slow and continuous variation of the control 
parameter which changes the amount of negative entropy fed into the (mesoscopic) 
system (which is initially at equilibrium), and looking for resonances in the absorption 
of the negative entropy through some response to the perturbation. Then below some 
critical value of the control parameter, i.e. before bifurcation occurs, these resonances 
must be observed at certain (discrete) values of the control parameter. 

The role of the TUP is inherent in our operator formalism, which realizes the quanti- 
zation of the entropy production rate as a consequence. This is solely due to the effect 
of (simultaneous) fluctuations. 

The formulation presented in this article is proposed as a proper framework for 
incorporating (simultaneous) fluctuations by emphasizing the vital role played by the 
universal constant k in fluctuations. The operator approach may be extended to other 
models of relaxation phenomena, e.g. for continuous systems, the formulation of which 
becomes analogous to that of a quantum field theory in imaginary time. Such a theory 
becomes technically useful and provides a deeper insight whenever fluctuations play a 
significant role. 
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